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A chiral 1,8-diacridylnaphthalene-derived fluorosensor exhibit-

ing a C2-symmetric cleft designed for stereoselective interactions

with hydrogen bond donors has been used for the determina-

tion of both concentration and enantiomeric composition of

carboxylic acids and amino acid derivatives.

The prospect of high-throughput screening of asymmetric reac-

tions has directed increasing attention to the development of

enantioselective UV and fluorescence methods during recent

years.1 Fluorescence spectroscopy offers a variety of advantages

over traditional chromatographic and NMR spectroscopic tech-

niques such as different detection modes (fluorescence quenching,

enhancement, and lifetime measurements), high sensitivity, low

cost of instrumentation, waste reduction, and time-efficiency.2 The

potential of fluorescence sensing for the determination of the

enantioselectivity of asymmetric reactions has been demonstrated

with the titanium tartrate-catalyzed addition of trimethylsilyl

cyanide to an immobilized aldehyde and with the enzymatic kinetic

resolution of trans-1,2-diaminocyclohexane by Pu et al. and our

group.3 In both cases, fluorescence sensing was found to provide

accurate ee’s and proved advantageous over laborious and time-

consuming chromatographic methods. Anslyn et al. reported a

practical approach to enantioselective fluorosensing of bifunctional

a-hydroxycarboxylates and diols based on indicator-displacement

assays with chiral boronic acid receptors.4 However, a method

providing the enantiomeric composition and concentration for a

wide range of mono- and multifunctional carboxylic acids and

amino acid derivatives has been elusive to date.

Previous X-ray and NMR spectroscopic studies conducted in

our laboratories have shown that 1,8-diquinolyl- and 1,8-

diacridylnaphthalenes are highly congested, rigid structures that

possess remarkable one-dimensional flexibility.5 While the two

cofacial heteroaryl rings perpendicular to the naphthalene frame-

work show little splaying, the torsional angle, t, can change over a

range of 50u, in particular upon binding to a hydrogen bond

donor. The usefulness of these fluorescent sensors for the

enantioselective analysis of chiral compounds has been attributed

to this one-dimensional conformational flexibility which facilitates

the accommodation of substrates of varying size in the C2-

symmetric pocket, Fig. 1.6 We wish to report the synthesis of

axially chiral anti-1,8-bis(39-tert-butyl-99-acridyl)naphthalene 1 and

its use as a practical fluorosensor for the determination of both

enantiomeric excess and concentration of mono- and multi-

functional carboxylic acids and amino acids.

The synthesis of 1 involved regioselective acridine ring

construction from N-3-tert-butylphenylanthranilic acid 5 which

was obtained from 4-tert-butylbromobenzene 2 in three steps.7

Lithiation and subsequent stannylation of 9-bromo-3-tert-butyla-

cridine 6 produced 7, which was then employed in a Stille cross-

coupling with 1,8-dibromonaphthalene to give 1,8-diacridyl-

naphthalene 1, Scheme 1. Slow evaporation of a racemic mixture

of 1 in isopropyl alcohol–hexanes (1 : 1) at room temperature

produced a single crystal suitable for X-ray analysis, Fig. 2.{ The
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Fig. 1 Structure of fluorosensor 1 and one-dimensional conformational

flexibility of 1,8-diacridylnaphthalenes.

Scheme 1 Synthesis of 1,8-diacridylnaphthalene 1.
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splaying and torsional angles between the acridyl rings of 1 were

determined as 5.3u and 23.4u, respectively. Because of the inherent

fluorescence and one-dimensional flexibility of 1,8-diacridyl-

naphthalenes in solution, this C2-symmetric bidentate ligand was

expected to effectively embed hydrogen bonding interactions with

chiral carboxylic acids and amino acids into a highly stereoselective

environment. We anticipated that the formation of diastereomeric

adducts could be conveniently measured and quantified by

fluorescence spectroscopy.

After the screening of several chiral HPLC columns, we found

that the enantiomers of anti-1 can be resolved on a Chiralpak AD

column. Enantiopure 1 (excitation at 360 nm, emission maximum

at 535 nm) and carboxylic acids and amino acids 8–19, Fig. 3, were

then employed in fluorescence titration experiments using

acetonitrile as solvent. We were pleased to find that a concentra-

tion of 3.5 6 1026 M of the fluorosensor 1 suffices to effectively

differentiate between minute quantities of the enantiomers of all

analytes studied.

For example, the (R)-enantiomers of a-halogenated carboxylic

acids 8 and 9 showed little quenching whereas the fluorescence of

(2)-1 decreased dramatically even when the (S)-enantiomers were

present at only millimolar concentrations, Fig. 4.

Diacridylnaphthalene 1 has two potential binding sites and can

undergo simultaneous hydrogen bonding with two substrates.

Benesi–Hildebrand plots revealed that (2)-1 forms stronger 1 : 2

complexes with (S)-8 and (S)-9 than with the corresponding (R)-

enantiomers which explains the more pronounced fluorescence

quenching observed with the levorotatory sensor. As expected, the

(+)-sensor affords opposite enantioselectivity, Fig. 4. We were

pleased to find that 1 also differentiates between the enantiomers

of carboxylic acids and amino acids 10–19, see ESI.{ Since

diacridylnaphthalene 1 exhibits a strong fluorescent signal that

effectively responds to chiral interactions with 8–19 at low

concentration, it better exploits the inherent sensitivity of

fluorescence spectroscopy than previously reported sensors and

extends this technique to enantioselective analysis of minute

sample amounts.

With this new efficient sensor in hand, we developed a

fluorescence method that allows accurate measurements of both

the total amount and the enantiomeric excess of a chiral

compound. This was realized by the combination of two assays

using racemic and enantiopure sensor 1. First, the total

concentration of a chiral analyte with unknown enantiomeric

composition was determined by fluorescence sensing with racemic

diacridylnaphthalene 1. As expected, fluorescence titration of

racemic 1 using either enantiomer of 2-chloropropionic acid 8

gave superimposable Stern–Volmer plots, see ESI.{ We

therefore envisioned that (¡)-1 could be used for quantitative

non-stereoselective analysis of a chiral sample, while the

enantiomeric excess could then be uncovered using the

enantiopure sensor in a succeeding assay. In order to evaluate

the accuracy and reproducibility of our sensing method, we

prepared different samples of chiral acid 8 having concentrations

of 1.5 and 3.0 mM, respectively, and enantiopurities varying from

5 to 95%. Through comparison of the averaged fluorescence

response of racemic 1 with a calibration curve we calculated

concentrations of 8 ranging from 1.47 to 1.51 and 2.97 to 3.06 mM,

respectively. Having determined the individual sample

concentrations, we were then able to uncover the enantiomeric

composition based on fluorescence quenching experiments with

(2)-1, Table 1.

In general, the results obtained for the six samples were

within ¡2% of the actual concentration of 2-chloropropionic

acid 8 and within ¡3% of the actual enantiopurity. For

example, fluorescence analysis of sample C (1.50 mM, 95.0%

(S)-8) gave a concentration of 1.51 mM and 96.8% (S)-8. Excellent

Fig. 2 Single crystal structure of 1.

Fig. 3 Structures of chiral carboxylic acids and amino acids.

Fig. 4 Stern–Volmer plots showing enantioselective fluorescence

quenching of (2)-1 in the presence of 8 and 9 (top). Sensing of the

enantiomers of 8 with (+)-1 (bottom). Sensor concentration: 3.5 6
1026 M. Excitation (emission) wavelength: 360 nm (535 nm).
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results were also obtained with the other samples, including A and

D which contained substantial quantities of the (R)-enantiomer.

The data demonstrate the high reproducibility and accuracy of this

method which is suitable for the screening of samples covering a

wide range of enantiopurities and a high excess of either

enantiomer.

In conclusion, we have prepared anti-1,8-bis(39-tert-butyl-

99-acridyl)naphthalene 1 exhibiting a highly congested C2-sym-

metric pocket for chiral recognition of carboxylic acids and amino

acid derivatives and demonstrated its use for practical stereo-

selective fluorescence analysis. Because 1 affords a strongly

fluorescent signal that effectively responds to enantioselective

interactions with chiral acids, this new sensor is suitable for

quantitative analysis of minute sample amounts. We have

developed a simple method that utilizes diacridylnaphthalene 1

in two facile fluorescence sensing assays. We believe that this

approach combines several attractive features: it allows determina-

tion of both concentration and ee by the use of one sensor (in its

racemic and enantiopure form); it depends on simple assays that

provide accurate values with high reproducibility; it eliminates the

need for substrate derivatization; and it utilizes a cost-effective and

sensitive technique (fluorescence spectroscopy) that minimizes

solvent waste.
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Table 1 Concentration and enantiomeric composition of six samples
of acid 8 determined by fluorescence quenching with (2)-1

Sample

Actual
concentration/
mM

Actual
% (S)

Calculated
concentration/
mMa

Calculated
% (S)a

A 1.50 5.0 1.47 6.4
B 1.50 55.0 1.48 56.2
C 1.50 95.0 1.51 96.8
D 3.00 15.0 2.97 16.2
E 3.00 55.0 3.02 56.9
F 3.00 85.0 3.06 87.8
a Average of three fluorescence measurements at 535 nm.
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